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I. Introduction and Overview 

Recent years have seen increasing research in integrated 

control and structural optimization. The primary motivation is 

control of large flexible space structures, which are becoming 

larger and more f l e x i b l e  at, t h e  same time t h a t  t h e i r  performance 

requirements are becoming more stringent. The complexity of 

these structures produces significant uncertainty in the 

parameters in any model due to =hinging environments and mndeling 

inaccuracies. Thus control/stsucture design methods are needed 

to produce high-performance, robust controllers and light 

structures. 

This report contains the most recent results of work carried 

out under a JPL sponsored research project dealing with methods 

for integrated controller design and structural modeling for 

large space structures. Previous work under this project focused 

on a method for the simultaneous development of a control law and 

a design model of a distributed parameter system to be controlled 

[JPLl, JPL2, JPL3-J. The method was based on an LQR approach and 

it used the notion of functional gains to provide a rationale for 

generating a finite dimensional design model of appropriate size 

and modal composition for the control problem at hand. The 

effectiveness of the method was enhanced by the use of tools such 

as gain energies and balanced realizations to speed up 

convergence to the required control law and model [JPLl, JPL2, 

JPL31. Related methods were developed for optimal estimator 



design. Balanced realization theory was subsequently used to 

reduce the order of the compensator resulting from the procedure. 

An important feature of this approach is that the order and 

modal composition of the model is automatically adjusted as a 

function of the performance objectives, disturbance environment, 

sensor locations and actuator locations. This effectively 

eliminates problems due ta modeling errors resulting from modal 

truncation (i-e., it eliminates spillover problems). However, 

there is nothing in the approach that explicitly addresses the 

issue of modeling errors due to poorly known parameter values 

(e.g., frequencies, damping constants, mode shapes, etc.). In 

computer experiments where these methods were used to design 

compensators for a flexible space antenna, it was found that some 

designs were quite sensitive to parameter errors of this type. 

Thus, work was begun to identify o r  develop methods which would 

overcome the difficulties caused by parameter errors. These 

efforts have proceeded along two tracks: (1) methods based on 

structured uncertainty models, and (2) sensitivity optimization. 

One approach suggested in the literature for improving 

robustness is known as Loop Transfer Recovery (LTR) [Dl]. This 

approach seeks to recover the frequency response associated with 

full state feedback even though the number of measurements 

available for feedback is smaller than the order of the state 

vector. This approach is motivated by the fact that if optimal 

linear quadratic regulator theory (LQR) is used to generate the 
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full state feedback design, then LTR methods guarantee that the 

gain and phase margins will approach -1/2 to + 00 gain margin and 

at least 600 phase margin. In a classical design context, these 

gain and phase margins are generally considered to be quite 

satisfactory as regards robustness. This approach was applied to 

an antenna model and it was found that a) for lightly damped 

space structures, gain and phase margins are not reliable 

indicators of robustness, and b) while standard LTR methods did 

produce the expected gain and phase margins, they did not provide 

a satisfactory improvement in robustness. There were, however, 

some benefits from LTR and these had to do with an increase in 

the low frequency loop gain which the method produced and the 

consequent improvement in nominal performance and disturbance 

rejection. Thus, efforts were directed toward retaining the 

desirable features of LTR and seeking modifications that would 

enhance robustness with respect to parameter errors. Structured 

uncertainty descriptions of modeling errors provided a key to 

developing such an approach. 

In a parallel investigation, a nonlinear programming 

approach was developed that combines methods for robust 

compensator design with structural optimization methods to 

develop an algorithm for integrated control/structure design. 

This algorithm achieves robustness by sensitivity optimization, 

which means minimizing the sensitivity of closed-loop eigenvalues 

with respect to uncertainties in plant parameters. The method 

can be used also to optimize the shape of structural elements to 
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reduce structural weight. An overall control/structure optimal 

design can be achieved by using  both of these features 

simultaneously. Appropriate constraints are imposed to ensure 

that high performance is maintained. 

The work outlined above led to five technical papers 

presented at meetings and/or submitted to journals and also 

formed the basis of the doctoral dissertations of Paul Blelloch 

and Armen Adamian, UCLA students who were supported by this 

contract. Because considerable effort was made to ensure that 

the technical results of this research were clearly presented in 

these papers and dissertations, they are the best sources for the 

anyone who wishes to learn about the work. This report, 

therefore, consists largely of a collection of these refrences 

together with some discussion which highlights the main results 

and tries to establish relationships among the various papers. 
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11. Technical Results 

A. Modified Loop Transfer Recovery for LQG Designs (LQG/LTR) 

I 
1 
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As noted above, loop transfer recovery is a procedure that 

seeks to recover the open loop frequency response of full state 

feedback. The method can be used for any full state feedback 

design, but it is typically used for full state feedback designs 

based on linear quadratic regulator (LQR) theory, because these 

designs are known to have desirable features including sizable 

gain and phase margins. In the standard procedure, one begins by 

designing a full state feedback regulator which meets the 

performance requirements. Since the full state is generally not 

available for feedback, a Kalman-Bucy filter must be used to 

obtain an estimate of the state using the available measurements. 

The full state feedback frequency response is recovered by adding 

a term to the disturbance noise covariance matrix and allowing 

this term to get large [Dll. 

The standard approach j u s t  outlined was not found to give 

satisfactory robustness when applied to a model describing a 

lightly damped flexible antenna. Several ways of changing the 

the approach were explored with limited success until a 

modification based on structured uncertainty models [D2] was 

tried. Structured uncertainty models represent specific modeling 

errors (frequency errors, damping errors, mode shape errors, 
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etc.) in the form of an auxiliary multivariable feedback loop on 

the closed loop system. The form of this loop motivates changes 

in the performance weighting matrix in the LQR problem and the 

disturbance noise covariance matrix in the K-B filter problem 

which consist of adding terms reflecting the specific nature of 

the uncertainty. Making the additional terms large or small 

permits a controlled tradeoff between performance and robustness. 

Thus one can arrive at a suitable balance among a) achieving a 

desired performance goal, b) achieving loop recovery, c) 

minimizing the effect of structured uncertainties in the plant 

model. This is done by varying the relative sizes of the 

weighting matrices corresponding to a), b) and c). These ideas 

and the results of their application are reported in Appendix I1 

of this report and in [Bl,BZ]. A journal paper on this work is 

in preparation. The results show a marked increase in robustness 

with only a modest loss in performance. The robustness is not 

achieved by rolling off the loop gain before the first uncertain 

modes. Several of the uncertain modes are actively controlled. 

Numerical results focus on uncertain frequencies, but the methods 

used can easily be extended to other types of parameter errors. 

B. Sensitivity Optimization 

This approach to robustness is developed in papers [Al-A4] 

in Appendix I and in Chapters 5-7 of Appendix I11 of this report 

(see also [AS]). The idea is to use nonlinear programming to 
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reduce the sensitivity of the closed-loop eigenvalues with 

respect to modeling errors, while maintaining sufficiently high 

performance of the closed-loop control system. 

Paper [All derives formulas for the sensitivities of closed- 

loop eigenvalues with respect to uncertain plant parameters and 

presents a numerical example that demonstrates the effect of 

these sensitivities on robustness in control of a flexible 

structure. The analysis in [ A l l  indicates that the first-order 

sensitivities of the closed-loop eigenvalues approach infinity as 

a controller and an estimator eigenvalue approach each other and 

suggests that robustness can be improved by separating controller 

and estimator eigenvalues. The numerical results for the 

flexible structure example in [Al, A21 demonstrate the improved 

robustness achieved by moving the estimator eigenvalues to the 

left of the controller eigenvalues. 

The research has lead to a general guideline for choosing 

the state weighting matrix and the process noise covariance (the 

Q matrices) in the LQG problem to improve robustness: After the 

state weighting for the control problem is chosen according to 

performance criteria, the Q matrix for the estimator design is 

chosen to move the estimator eigenvalues for the controlled modes 

with higher frequencies sufficiently to the left of the closed- 

loop controller eigenvalues to reduce the closed-loop eigenvalue 

sensitivities to acceptable levels. Examples of Q matrices that 

achieve this sensitivity reduction are given in [Al-A5]. In 



general, the estimator Q for a modal representation of a 

structure is diagonal and its diagonal elements increase as the 

corresponding structural frequencies increase. 

Paper [ A 3 ,  A41 in Appendix I and Chapters 6 and 7 of 

Appendix I11 discuss optimal eigenvalue sensitivity reduction in 

conjunction with optimal weight reduction by structural shape 

optimization. The idea is to combine minimization of closed-loop 

eigenvalue sensitivity with optimization of structural mass 

distribution, subject to constraints on eigenvalue location, to 

produce a robust controller, a light structure and a closed-loop 

system with fast response. While the measure of robustness used 

in the design objective is the first-order sensitivity of the 

closed-loop eigenvalues, the final evaluation of the robustness 

of the design is based on large variations in the uncertain 

parameters. The numerical results in CA3, A4, A51 and Appendix 

I11 demonstrate the effectiveness of the method for producing 

both a robust control system and a light structure. 

Among references that address integrated control/structure 

design are [BS, J1, Sl]. The papers [BS, Jl] optimize 

combinations of closed-loop eigenvalue location, control gain 

magnitudes and structural design subject to constraints on the 

closed-loop eigenvalues. Reference [Sl] minimizes a linear 

combination of structural mass and a quadratic control 

performance index subject to frequency constraints. Thus the 

combination of structural design and eigenvalue location in an 
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integrated optimization problem is not new. The main innovation 

in [A3, A4, A51 is the presence of a direct measure of robustness 

in the overall objective functional. 

C. Comparison of Results from Modified LQG/LTR Methods and 

Sensitivity Optimization 

While the two approaches taken for robust compensator design 

in Appendices I1 and I11 (or [A51 and [Bl]) and the corresponding 

papers are quite different, they lead to certain common 

conclusions. One important observation says that closed-loop 

eigenvalues corresponding to rigid-body modes should not lie to 

the left of closed-loop eigenvalues corresponding to flexible 

modes. This indicates that it is not a good idea to apply strong 

torques to the hub without taking proper care to also control the 

motion of the attached structure. This result is somewhat 

counter intuitive, since it says that robustness is improved by 

exerting relatively more effort in controlling the flexible 

modes. 

Another similarity lies in the way the Q matrices should be 

chosen in LQG compensator design. The structured uncertainty 

approach in Appendix I1 modifies the regulator and estimator Q ’ s  

by adding additional matrices whose diagonal elements are 

proportional to the corresponding structural frequencies. In a 

similar way, the sensitivity reduction in Appendix I11 requires 
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at least that the estimator Q have increasing diagonal elements, 

although these elements are not necessarily proportional to the 

frequencies. 

Finally, while the sensitivity reduction approach leads to 

design guidelines that directly involve separation of regulator 

and estimator eigenvalues, there is no explicit concern for 

relative regulator and estimator eigenvalue location in the 

structured uncertainty approach. However, the similarities 

between the Q matrices used in the two robust compensator design 

methods suggest an implicit concern for eigenvalue location in 

the latter approach. Numerical results support this contention. 

Examination of the relative locations of closed loop regulator 

and estimator roots for structured uncertainty based designs 

reveals that a characteristic of the more robust designs is a 

wide separation of regulator and estimator eigenvalues. 

Furthermore, the estimator eigenvalues for flexible modes (but 

not the rigid body mode) are well to the left of the 

corresponding regulator eigenvalues. (Compare for example Figs. 

4.3.16 and 4.4.19 in Appendix 11.) Further investigation of 

these points should produce better understanding of both 

approaches, and perhaps better guidelines for robust design of 

LQG compensators. 
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D. Additional Measurements and Robustness 

In carrying out numerical examples for robustness studies, 

it was noted that full state feedback LQR designs were very 

robust to parameter variations in the plant model. For this 

reason, it was felt that adding more measurements might markedly 

improve the robustness of estimator based designs. While time 

did not permit extensive study of this point, a few cases were 

run to explore the hypothesis in a preliminary way. 

The antenna model of Appendix I1 was used to examine this 

question. It is essential f o r  the reader to have this reference 

available to understand the data that will be given here. Case 

4.4.4b) in Appendix I1 was selected as a baseline design because 

its level of robustness is neither very great nor very poor. 

This design is based on an eight mode model of one quadrant of 

the antenna. Figure 1 shows nine possible sensor locations which 

were considered. Sensor 1 is a rotation sensor at the hub. 

Sensors 2 and 6 are displacement sensors at the rib tips, and 3 

and 7 are displacement sensors at the rib centers. Sensors 4 ,  5 ,  

8 and 9 are similar displacement sensors on the mesh. The 

baseline case 4.4.4b) uses position sensors at locations 1 and 2. 

In building the eight mode model, uncontrollable modes were 

discarded. As a result, it is a property of the model that 

measurements at locations 6, 7, 8, and 9 ,  are not independent of 

those at 2, 3 ,  4 ,  and 5 ,  respectively. Hence, this small 
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investigation only considers adding position and velocity 

measurements at locations 1 through 5 .  

3 2 

Fig. 1. Antenna Quadrant Model 

Table 1 shows how robustness varies when various 

measurements are used. The notation 1P means a position 

measurement was used at location 1, while 2V means a velocity 

measurement was used at location 2, etc. The noise covariances 

of all sensors was taken to be one, i.e., if the measurement 

equation is written as 

then E[nnT] is a unit matrix. The phrase "uniform frequency 

shifts" means all frequencies of the model are shifted together 

relative to the design model by the indicated percentages. The 

results show considerable gains in robustness when one begins 

with one position sensor on the hub (1P) and adds one or two more 
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. 
Measurements Range of Stability 

1P -28% t o  + 5% 
lP, 2P -32% to +46% 
lP, 3P -27x70 +13% 

-23% to +13% 1P,4P 

lP, 2P,3P -38% to +68% 
lP, 2P,4P -32% to +47% 

1 

(uniform frequency shifts) 

-- 
1p,5p - - _____ -28% to + 5./, 

13 

1P , 2P, 5P -32% to +46% 
lP, 1V,2P -31% to +48% 
lP, lV,2P,2V -31% to 448% 

- 

position sensors on the rib (2P and 3P). However, position 

measurements on the mesh and velocity measurements almost 

anywhere do not produce further significant improvement. These 

results suggest that the benefits of additional measurements is 

limited, at least within the context of the design procedure that 

has been developed here. 

additional measurements are available, they are still being fed 

through an estimator based on an erroneous model. 

explain why the robustness of full state feedback is not 

recovered even when more measurements are added. Much work still 

needs to be done to better understand the relationship between 

additional measurements and robustness. 

One must keep in mind that even though 

This might 

L I 

Table 1. Measurements and Robustness 



1 
I 
I 
I 
I 
I 
I 
I 
I 
1 
f 
I 
I 
I 
I 
I 
I 
I 
I 

14 

111. Conclusions and Recommendations for Future Research 

The problem of designing robust compensators for large 

flexible space structures is difficult and important. The 

research summarized here has developed two design methods that 

have produced robust compensators for the examples to which the 

methods have been applied, and the analysis underlying the design 

methods indicates that they should be successful in designing 

robust compensators for other flexible structures. 

Since both of these approaches are new, they are neither 

fully developed nor understood. As discussed earlier, there 

appear to be certain connections between the two design methods, 

but these connections are not clear yet. Further research on the 

methods should illuminate these connections and reveal improved 

design methods that combine features of the two approaches 

developed in this research. 

Also, the numerical methods used in both robust design 

methods need further development and refinement. For the 

sensitivity optimization method, the nonlinear programming 

techniques used so far have been generic. More efficient 

algorithms should be developed that exploit particular 

characteristics of the sensitivity optimization problem. 
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SENSITIVITY OF CLOSED-LOOP EIGENVALUES AND ROBUSTNESS 

by 
* * A. Adamian and J. S .  Gibson 

Mechanical, Aerospace and Nuclear Engineering 

Universi ty  of Cal i forn ia ,  Los Angeles 90024 

ABSTRACT 

When the  compensator for a l i n e a r  system uses  a s ta te  es t imator ,  
as does an optimal LQG compensator, t he  r e l a t i v e  loca t ions  of 
c o n t r o l l e r  ( f u l l  s ta te  feedback) eigenvalues and es t imator  eigenvalues 
can a f f e c t  robustness s i g n i f i c a n t l y .  In  p a r t i c u l a r ,  i f  an estimator 
eigenvalue is  equal to  a con t ro l l e r  eigenvalue,  then t h e  s e n s i t i v i t y  
of t h e  closed-loop eigenvalues with respec t  t o  uncer ta in  p l a n t  
parameters is i n f i n i t e .  The s e n s i t i v i t y  grows without bound as two 
such eigenvalues approach one another .  

This  paper der ives  t h e  e igenvalue-sens i t iv i ty  r e s u l t  and presents  
a numerical example t o  i l l u s t r a t e  t h e  e f f e c t  of  t h e  s e n s i t i v i t y  on 
robustness  i n  con t ro l  of a f l e x i b l e  s t r u c t u r e .  The numerical r e s u l t s  
i n d i c a t e  t h a t  avoiding t h i s  high s e n s i t i v i t y  should be a design 
c r i t e r i o n  i n  cont ro l  of  f l ex ib l e  s t r u c t u r e s .  

* This research was supported by the  J e t  Propulsion Laboratory, 
Pasadena, C A Y  Grant 957114.  



1. Introduction 

0 

.i.' 

We have discovered recently that a state-estimator-based 

compensator for a linear control system produces a closed-loop system 

whose eigenvalues are very sensitive to parameter errors when any 

estimator eigenvalues are close to any controller eigenvalues. Indeed, 

the sensitivity grows without bound as a closed-loop estimator 

eigenvalue and a closed-loop controller eigenvalue approach each other. 

Sections 2 and 3 of this paper show why the high sensitivity 

arises. An example in section 4 illustrates the effect of the 

sensitivity on robustness in control of a flexible structure. In this 

example the parameter errors are in the natural structural frequencies 

for which the compensator is designed. The numerical results show that 

the high eigenvalue sensitivity discussed in Section 3 diminishes 

robustness significantly and that separating controller and estimator 

eigenvalues improves robustness. 
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2. The Control System, t h e  Compensator and t h e  Closed-Loop Spectrum 

We consider  t h e  cont ro l  system 

i=  AX+ BU 

y = c x  

where the s t a t e  x ( t )  is an n-vector,  t h e  c o n t r o l  u( t )  is an m-vector 

and t h e  measurement y ( t )  is a p-vector .  The n x n matr ix  A,  t h e  n x m 

matr ix  B and t h e p x n  matr ix  C are a l l  real .  The compensator is 

^x = [A-  BF - GC]; +Gy 

U =  -Fi 

(2 .3 )  

where 3t) is an estimate of x ( t > .  The ga in  matrices F and G are  

determined by some compensator des ign  philosophy. The closed-loop 

system, shown i n  Figure 1, s a t i s f i e s  t he  d i f f e r e n t i a l  equat ion 

[;I = Ace[;]i (2 .5)  

where Ace is t h e  2n x 2n m a t r i x  

(2.6) 
--BF [t. [A - BF - G C ]  

Ace = 

The following s tandard s i m i l a r i t y  t ransformat ion  is  use fu l  here:  

where 

3 



% = A X +  BU 
y =  c x  

+ 
- 

x=[A-BF-GC];+Gy 

Figure  1. Closed-Loop System. 

This transformation shows t h a t ,  as is w e l l  known, t h e  

(2.8) 

spectrum of A,, 

‘I 
I 
I 
I 
I 
8 
I 
I 
I 

is t h e  union of  t h e  spectrum of [A- BF] and t h e  spectrum of [A - GC]. 

We r e f e r  t o  t h e  eigenvalues of  [A-  BF] a s  t h e  c o n t r o l l e r  eigenvalues 

and t o  t h e  eigenvalues of [A-GC] as  t h e  estimator eigenvalues.  Also, 

from here  on, w e  assume t h a t  t h e  eigenvalues o f A , f  a r e  d i s t i n c t .  

Now w e  de r ive  some formulas involving closed-loop e igenvec tors  

We denote by X, t h e n  x n matrix t h a t  w i l l  be use fu l  i n  t h e  next s ec t ion .  

whose columns a r e  t h e  eigenvectors of [ A -  GC], by X, t h e  n x  n mat r ix  

whose columns a r e  t h e  eigenvectors of [A - BF], and by Z t h e  2n x 2n matrix 

whose columns a r e  t h e  eigenvectors of Acf. Also, Ae is t h e  n x  n diagonal 

matr ix  conta in ing  t h e  eigenvalues of [ A -  GC], A, is t h e  n x  n diagonal 

mat r ix  conta in ing  t h e  eigenvalues of [A-  BF], and A,( is t h e  7n z 2n 

m a t r i x  

4 



(2.9) 

Hence, 

and similar equations hold for the estimator and controller eigenvalues 

and eigenvectors. 

It follows from (2.7) and (2.8) that 

and 

[X,' - XX,'] XX,' 
I [ x,' -x, - 1  z-' = 

- 
where the n x n matrix X satisfies 

- -  
A,X - XI\, = -x,-'BFx, 

(2.12) 

(2.13) 

There exists a unique solution to (2.13) because, by hypothesis, 

A, and& have no eigenvalues in common. 
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3. S e n s i t i v i t y  of the  Closed-Loop Eigenvalues with Respect t o  P lan t  

Parameters 

The preceding s e c t i o n  assumes t h a t  t he  p lan t  is known exac t ly ,  

so t h a t  t h e  matr ices  A, B and C i n  the  compensator a r e  the  same as  those  

i n  t h e  p l an t .  Now we assume t h a t  t he  p lan t  is a funct ion of a parameter 

p , SO t h a t  

A = A@), (3.1) 

B =  WP), (3.2) 

The compensator is designed for a nominal parameter valuep,,  and t h e  

closed-loop system is  

where 

The gains  F and G a r e  based onPo.  

When p = Po, we have t h e  s i t u a t i o n  i n  Section 2 .  Here, we s tudy  

t h e  f i r s t - o r d e r  s e n s i t i v i t y  of the  eigenvalues of A,#?) w i t h  respec t  

t o  an e r r o r  between the  t r u e  p l an t  parameterp and the  nominal va iuep ,  

assumed for compensator design. By standard r e s u l t s C L 1 ,  Pl], we have 

(3.6) 



where diag [.I means the diagonal matrix with the same diagonal 

elements, and 

The subscript /3 always indicates the partial derivative with respect 

too. Using.(2.11)-(2.12) and carrying out the multiplication in ( 3 . 6 )  

where 

and 

_I 

According to (2.13), the i-j element of the matrix X approaches 

infinity like the reciprocal of the difference between the ith controller 

eigenvalue and the jth estimator eigenvalue, except in rare special 

circumstances. This element o f X  in general enters the derivative of 
- 

each closed-loop eigenvalue, according to ( 3 . 8 ) ,  and produces the large 

sensitivity when estimator eigenvalues are close to controller 

eigenvalues. Also, when estimator eigenvectors and/or controller 

eigenvectors are nearly linear dependent, the elements of Se-' and/or 

Xc-' approach infinity and produce large sensitivity according to ( 3 . 8 ) .  

7 



The following section illustrates the effect of eigenvalue-sensitivity 

on robustness. 
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4. Example 

The structure in Figure 2 consists of a uniform Euler-Bernoulli 

beam cantilevered to a rigid hub at one end, with a point mass mi 

attached to the other end of the beam. The hub can rotate about its 

fixed center, point 0, and the control is a torque u(t) applied to the 

hub. There are two sensors, which measure the rigid-body angle0 and 

the displacement of the point mass mi,  w(t,  t).  

In illustrating the effect on robustness of the eigenvalue 

sensitivity discussed in Section 3,  we use a finite element model of 

the structure, constructed with three uniform beam elements and cubic 

B-splines as interpolation functions. (For a given number of degrees 

of freedom, B-splines approximate the beam more accurately than do 

Hermite splines. See CG2, Rl]). Because cubic B-splines have continuous 

first and second derivatives, the three-element model of the structure 

in Figure 2 has four degrees of freedom, including the rigid-body mode. 

We model Voigt-Kelvin viscoelastic damping in the beam, which 

means that the damping matrix is a constant times the stiffness matrix. 

We take the state vector x(t) to represent the modal displacements and 

velocities of the three-element/four-mode model, so that the matrix A 

is 

where Q is a 4 x 4 diagonal matrix containing the natural frequencies 

of the model, co is the damping coefficient and /? is an uncertain 

parameter with nominal valueB,=l. The first element of (1 is zero, 

9 



PARAMETER 

hub radius r 
hub moment of inertia Io 

beam length c 

modulus of elasticity E 
damping coefficient c, 
poifit =ass E, 

undamped fundamental frequency a2 

beam mass per unit length mb 
2nd moment of cross-sectional area I 

Table 1. Structural Data. 

VALUE 

10 
lo2 
IO2 
10 -* 
41 3 
lo4 
10 -3 

1 
0.967 

UNIT 

in 
slugin 
in 
sluglin 
in4 
sluglin.sec2 

2 

slug 
rad/ sec 

1 m 

I k e 

Figure 2. Flexible Structure. 
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corresponding to the rigid-body mode. When we refer to the natural 

frequencies of the structure, we will mean the three nonzero elements 

ofR only. We assume that the matrices B and C do not depend onp. 

Of course, this model may not be sufficiently accurate for 

designing a compensator for the real structure. InCGl, G2, G31, we have 

studied the question of how accurate a finite element model is 

necessary for compensator design and how many modes must be represented 

in the estimator. While robustness with respect to truncation errors 

is as important as robustness with respect to parameter errors, we 

assume here that the three-element model is the structure, to 

illustrate best the effect on robustness of the eigenvalue sensitivity 

discussed in the previous section. 

For our four-mode model of the structure, we designed a family 

of linear-quadratic-gaussian (LQG) compensators [KI]. Each compensator 

has the control gain 

1 T  F = R,- B P, (4.2) 

where the matrix P, satisfies the Riccati equation 

The matrix (scalar in this case) R, penalizes the control in the 

standard quadratic performance index and the matrix Q, penalizes the 

state. The positive scalar a, guarantees that the eigenvalues of 

[A(P,,)- BF] (the controller eigenvalues) have real parts to the left 

of-aC. The control gain for all compensators is computed with 

r, = 0.2, (4.4) 
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R, = 0.01, (4.5) 

and Q, such t h a t  

xTQ,+ = 5008’ + 2CTota.l Energy]. (4.6) 

Tota l  energy means k i n e t i c  energy p lus  e l a s t i c  s t r a i n  energy i n  t h e  

s t r u c t u r e .  

The compensators d i f f e r  i n  t h e  es t imator  ga ins ,  which are given 

by 

T - 1  G =  P,C R, (4.7) 

where P, s a t i s f i e s  t he  Riccati equat ion 

Each es t imator  is a Kalman-Bucy f i l t e r  f o r  t h e  cont ro l  system i n  

(2.1)-(2.2) with A replaced by [A(po)+ lze] a s t a t i o n a r y  gaussian process  

noise  with covariance matrixQ, added t o  the  r i g h t  s i d e  of ( 2 . 1 )  and a 

s t a t i o n a r y  gaussian measurement noise  with covariance matr ix  Re added 

t o  t h e  r i g h t  s i d e  of ( 2 . 2 ) .  The p o s i t i v e  s c a l a r a ,  guarantees t h a t  t h e  

eigenvalues of [A(p,,) -GC] ( the  es t imator  eigenvalues) have r e a l  p a r t s  

t o  t h e  l e f t  of -ae. The estimator ga ins  a r e  computed with 

a,= variable = O . O ,  0.2, 0.4, ..., 3.8, (4.9) 

0 0  
Q e = [  0 1  1. 

(Each block. i n  Q, is a 4 x  4 matrix). 
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We designed twenty est imators  f o r  t he  values of z, ind ica ted  i n  

(4.9), and with each of these es t imators ,  we formed the  closed-loop 

matrix&&) i n  (3.5) f o r  a range o f p  ' s .  Our measure of robustness 

f o r  a compensator is how muchfi can vary, from t h e  nominal value of 1, 

before  the  closed-loop system becomes unstable;  i . e . ,  before  some 

eigenvalue ofA,# )  has nonnegative real pa r t .  Figure 3 summarizes t h e  

r e s u l t s  of t he  robustness test. The s o l i d  l i n e  connects t h e  

eigenvalues of [A(&)- BF], which a r e  t h e  same f o r  each compensator. 

(Only eigenvalues with pos i t ive  imaginary p a r t s  are p l o t t e d . )  For each 

compensator, a dashed l i n e  connects . the eigenvalues of [A(/$,)- GC], and 

t h e  number above each of these estimator eigenvalue p l o t s  i nd ica t e s  

t h e  percent change in & (from t h e  nominal value of 1) a t  which t h e  

closed-loop system with t h a t  compensator becomes unstable .  We p r e f e r  

to  look a t  because it represents  t he  change i n  open-loop p l a n t  

f requencies .  

The compensators t h a t  place t h e  est imator  eigenvalues c l o s e  t o  

the  c o n t r o l l e r  eigenvalues produce a nonrobust closed-loop system, 

allowing no more than -11% modeling e r r o r  i n  t h e  na tu ra l  f requencies .  

As t h e  d i s tance  between es t imator  eigenvalues and c o n t r o l l e r  

eigenvalues increases ,  t h e  robustness increases  u n t i l  t he  compensator 

w i l l  t o l e r a t e  up t o  5 2 2 %  frequency e r r o r  and maintain a s t a b l e  

closed-loop system. We have found t h a t  t he  most robust compensator 

represented i n  Figure 3 a l so  w i l l  t o l e r a t e  up t o + 2 2 %  e r r o r  i n  any 

one of t h e  th ree  p lan t  frequencies when the  o the r s  remain a t  t h e i r  

nominal values.  I t  is important t o  note t h a t  the  robustness increases  

a s  the  es t imator  eigenvalues move away from t h e  c o n t r o l l e r  e igenvalues ,  
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even though t h e  performance also increases  in  the  sense t h a t  es t imator  

e r r o r s  decay a t  f a s t e r  exponential r a t e s .  

Eventually,  for a, > 2.6, t h e  robustness s t a r t s  t o  decrease again.  

Close examination of ou r  numerical r e s u l t s  ind ica tes  t h a t  t h e  estimator 

eigenvectors  approach l i n e a r  dependence f o r  t h e  l a r g e s t  values  of a,, 

so t h a t  large t e r m s  e n t e r  the r i g h t  s ides  of (3.9) and (3.10) i n  t h e  

matrix Xe-'. This  is another  demonstration of the  r e l a t ionsh ip  between 

robustness and s e n s i t i v i t y  of closed-loop eigenvalues with respec t  t o  

p a r m e t e r  errors. 

In genera l ,  as t h e  real  p a r t  of a conjugate p a i r  of complex 

eigenvalues becomes l a r g e  negat ively,  the  corresponding conjugate  p a i r  

of e igenvectors  become nearly l i n e a r l y  dependent. In our example, t h i s  

happens f i r s t  f o r  t h e  eigenvalues neares t  t he  r e a l  axis, whose 

fiaqiiencg is betveen 0.035 and !O-6 r a the r  than zero, as t h e  graph might 

suggest.  And it happens to a l e s s e r  extent  for t he  p a i r  of  e igenvalues  

with frequency approximately 1. 

Another reason t h a t  the  robustness cannot be improved more j u s t  

by moving a l l  of  t h e  est imator  eigenvalues f a r t h e r  t o  the  l e f t  is t h a t  

the  second-order e igenvalue s e n s i t i v i t i e s  w i t h  respect  t o  the  uncer ta in  

parameter involve the  reciprocal  of t he  d i f fe rence  of any two es t imator  

eigenvalues and of any two c o n t r o l l e r  eigenvalues.  Because t h i s  

follows from s tandard  formulas [LI, PI] and is not a r e s u l t  of t h e  

s p e c i a l  s t r u c t u r e  of t h e  closed-loop system matrix Acf,  we do not 

d i scuss  it  i n  d e t a i l  here .  Also, we have found the  f i r s t - o r d e r  

s e n s i t i v i t i e s  t o  be more important f o r  robustness.  However, t h e  p a i r s  

J. 4 
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1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1  
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RERL 

Figure 3 .  Robus tness  T e s t  R e s u l t s .  
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of c o n t r o l l e r  and es t imator  eigenvalues near the  r e a l  axis cause large 

second-order s e n s i t i v i t y  i n  the closed-loop eigenvalues.  

To reduce both t h e  f i r s t -o rde r  s e n s i t i v i t y  produced by almost 

l i n e a r l y  dependent e s t i m a t o r  eigenvectors and the  second-order 

s e n s i t i v i t y  produced by closed-loop eigenvalues near  t h e  real axis, 

w e  designed a new compensatorwith 

a, = 0.2, (4.12) 

R,= 1.0, (4.13) 

. -25 
6 .  

- -  
2 I 
35 

ze = 0.25, 

I 
0 

Q e =  - 

0 

- -  

0 

I 

0 

0 

I 

I 
0 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The r e s u l t i n g  closed-loop eigenvalues a r e  shown in  Table 2 .  With t h i s  

compensator, t h e  closed-loop system f i r s t  becomes uns tab le  a t  6 = 
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-SO%, as opposed to -22% for the most robust compensator represented 

in Figure 3. 

~ ~~ 

Eigenvalues of [A@,,)- BF] 

-0.4221 k i0.5805 

-0.5915f i1.0571 

-0.686 1 f i3.30 1 1 

-0.6773 f i7.3835 

Eigenvalues of [A@,,) - GC] 

-0.5347 f io. 1362 

- 1.2888 f i2.2618 

-2.2686 f i5.7000 

-12.914+ i13.902 

Table 2. Closed-Loop Eigenvalues with Robust Compensator. 
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5 .  Conclusions 

The numerical results for the example illustrate the significant 

effect that the closed-loop eigenvalue sensitivity derived in Section 

3 has on robustness with respect to modeling errors. The results in 

Section 3 suggest and the example confirms that controller and 

estimator eigenvalues should be separated for a robust design. Almost 

linearly dependent estimator eigenvectors or  controller eigenvectors 

diminish robustness also. 

In the example, we chose to move the estimator eigenvalues to the 

left of the controller eigenvalues. While such relative placement 

of controller and estimator eigenvalues is used frequently in 

compensator design so that the faster decaying estimator error will 

make the compensator approximate full-state feedback, we have seen 

no mention in the literature of the relationship demonstrated here 

between controller/estimator eigenvalue location and robustness. We 

have found that, to improve robustness by reducing closed-loop 

eigenvalue sensitivity, the eigenvalue separation may be achieved as 

well by placing some or all of the controller eigenvalues sufficiently 

to the left of nearby estimator eigenvalues or, not surprisingly, by 

separating imaginary parts of eigenvalues. This is important in 

controlling complex flexible structures, which often have lightly 

damped modes along with heavily damped modes, making it impractical 

to place all estimator eigenvalues to the left of all controller 

eigenvalues. 



E 

Although the  ana lys i s  i n  Sec t ion  3 and the  example i n  Sec t ion  4 

deal  w i t h  a s i n g l e  uncertain parameter, it should be c l e a r  t h a t  t h e  

r e s u l t s  apply t o  any number of parameters. The formulas i n  Sec t ion  

3 g ive  the  s e n s i t i v i t i e s  of  t he  closed-loop eigenvalues w i t h  r e spec t  

t o  each parameter. Recently in [AI], w e  have incorporated t h e  

minimization of t h i s  s e n s i t i v i t y  i n t o  t h e  l a rge r  problem of i n t e g r a t e d  

c o n t r o l / s t r u c t u r e  design. The closed-loop eigenvalue s e n s i t i v i t i e s  

with respect  t o  a l l  uncertain parameters a r e  included i n  t h e  o v e r a l l  

c o n t r o l / s t r u c t u r e  ob jec t ive  func t iona l  f o r  a numerical op t imiza t ion  

problem. 
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ABSTRACT 

When a flexible structure is to be controlled 
actlvely, optlmum performance Is Obtained by 
integrated, or slmultaneous, deslgn of the struc- 
ture and the controller, as opposed to the c m n  
practlce of deslgning the structure Independently 
of control conslderatlon and then designing a 
controller for a fixed structure. The primary 
design objective from the structural polnt of 
view usually i s  to minimize might, while the 
control design objectlws depend on the applica- 
tion. 
control system Is robustness with m p s c t  to 
uncertaln plant parwetars. This paper 
discusses slwltaneous control/structum h l g n  
uhen the overall design objactlve co&im tho 
weight of the structure and the robustness of the 
closed-loop control system. For nuerlcal +ti- 
mization, robustness i s  represented by the senrl- 
tivity of the closed-loop eigenvalues d t h  
respect to uncertain paraaeters. A n  exuple 
illustrates the optlul deslgn of a flexible 
structure along with a robust compensator. 

An Important requirement for 8 pcactlcal 

RECENT YEARS h8ve seen increasing research in 
integrated control and structural optimization. 
The primary motivation of this research Is 
control of large flexible space structures, 
which are becoaing larger and more flexible at 
the same t i n  that their performance nquirewnts 
are becoming more stringent. Also, there I s  a 
high degree of uncertainty in the parsreters of 
such structures due to changing environments and 
modeling inaccuracies. 

design light flexible structure along with robust 
coapensators by addressing the follocring probltm: 
Find structural parameters in addition to 
Controller and observer gains that liniMiZe an 
objective function that includes both Structural 
weight and sensitivlties of c!osed-loop eigen- 
values with respect to plant uncertainties, sub- 
ject to eigenvalue constraints. Note that 

The primary objective of this pawr is to 

robustness means insansltlvlty of the closed-loop 
performance with respect to plant uncertalntier. 
Although there 1s a vast literature on achieving 
robust deslgns using conventional control theory 
approaches, to our knowledge the proposed 
a p p r w h  Is neu. 

 ha integrated control/stActure optlmiration 
problem is stated in Section 1 and a numerlcal 
example Is presented in Section 2. 

1. FIRST- SEI(s1TIVIlY M O  sTRucN(uL 
nfI(MT oeTIMIuTIo(( 

PROBLEM STATU(ENT .- Find the elements of h 
(structural deslgn variables), and the gain 
matrices F and 0 (control h l g n  varlables) that 
mlnimire ( 1 - 1 ) ,  uhich Includes the structural 
weight and tho first-ocdcr Mcultlvltles of the 
closed-loop e l g e m l w r  with rwpect to plant 
uncertalntles (natural frequencies), subject to 
algenvalw constraints and partial slde 
constraints m dcrlgn variables; i.c., choose F, 
0 and h to minlmfre 

subject to 



where 

(1 - 7 )  

2 nT = [Ut ...... an] (1.10) 

I n  problems w i t h  a rigid-body mode, wl, Is zero 

and m use only the s e n s l t i v i t l e s  w i t h  mpp t o  
the nonzero frequencies i n  (1-1), so tha t  and 
u; are not included i n  (1.8) - (1.10). 1 

2. UUI(PLE 

Consider the s t ructure shown i n  Figure 1. An 
Euler-Bernoull l k e a  i s  attached (cantilevered) 
t o  a r i g l d  hub a t  one end and a polnt  mass a 
attached t o  the other end o f  the beam. The hub 
can r o t a t e  about I t s  f i xed  center, po int  0. a n d  
the cont ro l  i s  a torque u ( t )  applled t o  the hub. 
There are two sensors which measure the r i g l d  
body angle e and the dlsplece#nt of the polnt 
mass l , w(t,f). The f i n i t e  e l e e n t  model of 
t h l s  s h c t u r e  was obtalned by using three km 
e l m n t s  w i t h  var iable cross-sectional h d g h t  and 
the B-spllnea as the In terpolat ion functions. 
(8-splines are piecewise cubic polynomials w i t h  
continuous second derivatives. See Sl). Then 
the generalized coordinates m r e  transformed t o  
the normal coordinates o f  the structure and a 
damping rodel  proportional t o  the s t i f fness  of 
the s t ructure was selected. The i n i t i a l  control 

i s  

&sign was done according t o  the LQO theory. 
(set Kl). 
t o r  u ( t )  for the LQQ pro4lem that minimizes the 
performance Index 

The steady-state op tha1 contro l  vec- 

Is generated by the l lnear control l a w  

u ( t j  - -FR(tj (2.2) 

where 

Is the optimal control  galn matrix and the 
constant nonnegative de f ln l te  rea l  symmetric 
matr ix P sa t ls f ies  the algebralc matrix Riccat l  
q u a t  ion 

PIA*Iac]+[A+Iac] T P - PBRclBTP + Qc .I 0 (2.4) 

and 

- T -1 
G = P C R e  (2.5) 

Is the opt lna l  observer gain matrix, and the 

constant-nonnegative de f ln l te  rea l  s y u e t r l c  
matrix, P, covariance matrix o f  the f i l t e r i n g  

error,  satisfies the alegebraic matr ix Riccat l  
equation 

T - T - 1 -  [A+IaelP + PIA+Iae] - PC Re CP + Qe = 0 (2.6) 

Tabie i phons the inltial st ructura l  data and 
Table 2 shows the I n i t i a l  control  data, nhere 
a and a are pos i t ive scalars which we add t o  
tfk diagsnel t leaents of the matr ix A t o  move the 
cont ro l le r  and/or observer eigenvalues t o  the 
l e f t  o f  these values. 

TABLE 1. I n i t i a l  Structure Data. 

hub radius 
hub moment of i n e r t i a  
beam length 
beam mass per un i t  length 
2nd moment of cross-sectional a r t a  
modulus of  e l a s t i c i t y  
proport lonal  damping coef f ic ient  
po int  mass 
fundamental frequency o f  undamped s t i  

Io 101 1 slug.in* In I r I 10 

1 10' I i n  
nb 1 10-1 I s lug/ in 
I 4/3  I i n' 
E I 5 * 1 0 '  1 slug/in.sec' 

co 

i 

lo- '  I 

1 slug 1 
-uc t u r e  1 2  159 rad /cer  I 



lob10 2. I n i t i a l  Control Data 

Qc(l.1) - ~ . O o O  Qc(S.5) - 10,000 

Qc(3,3) - 10.000 G ( 7 . 7 )  10,000 

R, - 1.0 b - 1  

Qc - 0.0 

Qc(2.2) - 5,000 h ( 6 . 6 )  - 1,000 

Qc(4,4) - 10,000 g ( 6 . 8 )  - 40,000 

a, - 0.3 
The o p t i m u m  design was obtained by uslng the 

NE optimizer where the method o f  feasible dlrec- 
t i on r  f o r  constralned minimization and f i n i t e  
dif ference gradients e r e  selected. 
the control  object ive J (F,Q,h) can Beva lua ted  
by doing the numerical tinalysis 1: R 
of rea l  Zn-vectors) Instead o f  C (thc space of 
cooplox In-vectors). (See A l ) .  Table 3 con- 
ta ins the opt imizat ion data used for this cxaaple 
and Table 4 l i s t s  the deslgn variables of the 
i n i t i a l  and the optimlzed closed-loop &signs. 
Figure 2 contains the i t e ra t i on  history o f  the 
control object ive J (F,G,h) and the structural 
m i g h t  W(h), where sc i s  reduced by 70% and W i s  
reduced by 32%. 

The robustness o f  the closed-loop eigenvalues 
was tested by varying a l l  of the natural frequen- 
cies o f  the p lan t  by a constant percentage while 
malntaining the o r ig ina l  damping o f  the  plant and 
the o r ig ina l  natural  frequencies i n  the compen- 
sator. For the i n i t i a l  design, the closed-loop 
system with the fu l l - s ta te  feedback remains 
stable fo r  t90% var ia t ion  i n  plant frequencies, 
( f u l l - s ta te  feedback means that the entlre s ta te  
vector I s  measured, so that no estimation i s  
required i n  the closed-loop systea). 
loop system w i t h  the coclpcnsator i s  unstable f o r  

Note that 

( the space 

The closed- 

30% decrease i n  plant frequencies. 
optimized structure and coapensator, the closed- 
loop r y r t m  w i th  the fu l l -s ta te  feedback and the 
optimlzed compensator r c ra in  stable f o r  f90% 
var ia t ion  i n  plant frequencies, which indicates a 
considerable Improvement compared t o  the robust- 
ness o f  the i n l t l a l  design. Figure 3 s h w  the 
closed-loop and the open-loop elgenvalucs (wi th 
pos i t l ve  imaglnary parts) of the I n i t i a l  and the 
optimized deslgns, and Figure 4 i s  the enlarged 
port ion o f  Figure 3 enclosed by center l ines.  

Table 3. Optimization Data  

For the 

Re(Ac)' - -0.35 

Re(Ac)'  - -120. 
:.(Ac)' - 0.1 

Re(Ae)' * -0.4 

&(Ae)' = -120. 

:.(Ae)' = 0.1 

1 i f  Acf-Ac, 1 - 1, ..., I n  

and J = 1, ..., 2n. 1 

a = 3.7 

"S h i  - 1.0 i - 1 ,  ..., 

"S i 1, ..., 1 
h i  = 0.01 

U 
h i  = 3.0 1 = 1, .._. ns 

n 

Figure-1 ( 8 )  F l e x i b l e  S t r u c t u r e  ( b )  Bern Cross Section 
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Figure-2.(a)Iteration History of Control and Structural Objective.  

(b) Initial and Optimized Beam. 
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Figure-3. Closed-Loop Eigenvalues of  t h e  I n i t i a l  and the O p t i m i z e d  

Design . 
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Design. 



A l t h o u g h  the o b j o c t i w  function of (1.1) and 
(1 .8)  a s s d  that  e11 freqwncles vary by the 
8- percentage the clowd-toop optlaird design 
rauins stable f o r  -708 Indepndont v a r l a t i m  j n  
m y  plmnt fmqumcy (ofto O t  a time). For 
a r b i t r a r y  fnqumy mcertalnt les,  (1.1) 0nd 
(1.8) C U I  bo aodl f ied by ur lng tho sum o f  the 

absolute values of th. c l ~ - l o o g  o l g e n v e 1 ~  
s e n s i t i v i t i e s  wi th  W p c t  t o  Indlv ldual  f r q w n -  
cior. 
optl8iZ8tlW1 does not Offer conslderablo (rprove- 
.ant coclp.red t o  ttn f l r s t  order 000, since tb 
natural fraqwncies of th is  example are -11 
separated. 

In .ddi t locr.  the seumd order s e n r i t l v i t y  

TMLE 4. Design Variables of the I n i t l a l  and Optimized Closed-Loop Ocsdgns. 

(a) Cross Sectional M igh t .  

I I I I 

(b) Controller and Observer Qalnr 

6 
7 

INITIAL OESIGN I OPTIHIZEO OESION I 

89.44 
-47.42 
-33.13 
-43.35 
180.0 

-24.11 
-12.10 
-11 -41 

241.6 
0.021 

-0.155 
0.Q58 
163.3 
0.276 

-0.967 
-1.882 

-0.181 
15.02 
4.302 

-6.449 
-0523 
20.43 
103.9 

185.2 

88.02 
21 -01 

-51 -97 
-152.4 

183.5 
-15.32 
-12.01 
-24.84 

247.6 
0.023 

-0.153 
0.060 

163.4 
27.62 

-0.967 
-1 -882 

-0.789 
14.99 
4.284 

-5.469 
-0.540 
20.43 
103.9 
185.2 



REFERENCES - number of structural modes - nraber of sensors (measurement) - nuaber of mctuators 
= number of structural design verlables - 4nx4n closed-loop system Patrix 
I an Eigenvalue of A 
2nx2n opm-~oop sySCem matrix 
Znxr actuator Influence matrix - mx2n measurement mtrix - rx2n control gain matrlx - 2- observar gain matrlx 

I an eigenvalue of (A-BF) matrix 
(controller eigenvalue) 

= 2nx2n nontmgatlve definite real sym- - rxr posltlve definite m a 1  symmetric 
Input weighting utrix 

= controiier alpha shift 
I an elgenvalue of (A-QC) mtrix 

(observer eigenvalue) 
I 2nx2n nonnegative definite real SF- 
rtrlc stat. axcltation noise covariance 
kernel matrix 

observation noise covariance kernel 
lstrlx 

metric St8te mlghting M t d X  

= w posltlve definite real symmetric 

= observer alpha shift 
= control vector 
= uncertaln plant paremoter (natural 
fraquancies) 

4 - structural design variable -tor 
~CfOSS-SOCtiOMl helnht) 

J(F,G,h) - objective function- 
J,(F,G,h) = control objsctlvc function 
W(h) = structural might 
yi - scalar weighting fmctor 
a = scalar weighting factor 
E = expected value 
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ABSTRACT 

A procedure is developed for dealing with perfor- 
mance and robustness issues in the design of mul- 
ti-input multi-output compensators for lightly 
damped flexible structures . The procedure is 
based upon representing errors in the plant 
design model as structured uncertainties, and 
applying a modified version of the Loop Transfer 
Recovery (LTR) design method. Real parameters 
errors such as frequency errors, damping errors 
or modal displacement errors can be treated. The 
approach involves adjusting the cost function in 
the rcgu?at=r problem and the process noise mode? 
in the estimator problem in a particular manner 
which reflects the assumed structure of the 
modeling errors. Numerical examples dealing with 
the control of a large flexible space antenna 
with uncertain frequencies demonstrate a consid- 
erable improvement over standard LTR methods. 
Convenient design parameters can be varied until 
a satisfactory compromise is achieved between 

I 
I 
I 
I 

performance and robustness. I - I. INTRODUCTION 

Robust compensator design for flexible structures 
involves maintaining closed-loop stability in the 
face of several types of model errors. Two of 
the most important are unmodeled, or neglected 
dynamics and parameter errors in the modeled 
dynamics. A procedure which addresses the prob- 
lem of determining the required order of the 
design model as a function of desired performance 
is presented in Refs. [l-31. The present work 
focuses on the problem of parameter errors in the 
modeled dynamics. A modified Loop Transfer 
Recovery (LTR) approach is used to compute a con- 
trol law which is robust with resDect to reason- 

I 
u 
I 

able plant parameter variations. 

In Refs. [ 1-31, the number of modes required 
in the design model is determined by the examin- I 
ing the convergence of the compensator as the 
order of the model is increased. This provides a 
series of finite-dimensional approximations to 
the true, infinite-dimensional LQG control law. 
The convergence of the compensator not only 
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ensures that the finite dimensional compensator 
will stabilize the infinite-dimensional structure 
(robustness rjith respect to unmodeled dynamics), 
but also indicates that the addition of further 
modes to the design model will not improve the 
control design. R e  sequence in which modes are 
added depends on their approximate balanced sin- 
gular values [4,5]. a measure of their importance 
in the input/output map of the system. This 
method constitutes an infinite-dimensional. per- 
spective on the LQG design procedure, while uti- 
lizing coiiimonly znderstccd finite-dimensional 
contro.1 design tools. 

Once the appropriate reduced order model has 
been determined, robustness with respect to par- 
ameter errors may be addressed within the context 
of a finite-dimensional problem. Since closed- 
loop stability seems to depend most strongly on 
errors in modal frequencies, the present work 
concentrates on robustness with respect to fre- 
quency errors. 

Loop Transfer Recovery (LTR) (61 is a design 
scheme which offers some advantages over other 
LQG based design approaches. First it recovers 
the sizable gain and phase margins of full-state 
feedback LQR designs [7], but more importantly it 
gives the designer control over loop gain, which 
implies retention of the desirable performance 
and disturbance rejection qualities of full-state 
feedback designs. Although good gain and phase 
margins are traditionally associated with robust- 
ness, examples show that robutness is not neces- 
sarily a function of the nominal loop shape. In 
fact loop shaping is an effective way to achieve 
robustness only when plant uncertainties are 
accurately modeled by a single unstructured unc- 
ertainty. Lightly damped flexible structures 
with uncertain modal frequencies on the other 
hand are systems with highly structured real par- 
ameter Uncertainties. For systems of this type, 
achieving robustness by loop shaping alone gener- 
ally results in an overly conservative design 
with substantially reduced performance. The 
modified Loop Transfer Recovery approach pre- 
sented here maintains some of the advantages of 
Loop Transfer Recovery but produces a less con- 
servative design which offers a considerable 
improvement in robustness with respect to parame- 
ter errors. 

The approach described here was motivated by 
the p-synthesis method proposed by Doyle [6,7]. 
Doyle's method guarantees stability of a closed- 
loop design for all systems whose dynamics remain 
within prescribed bounds relative io the nominal 
design model. The method, however, is substan- 



I 
I 

A =  

t i a l l y  m t r *  numer ica l ly  complex than  s t a n d a r d  LC,C 
-methods.  The approach p r e s e n t e d  h e r e  does not  

guarantee  s t a b i l i t y  f o r  a modeling e r r o r s  w i t h i n  
p r e s c r i b e d  bounds, bu t  it does provide  a method 
which permi ts  a c o n t r o l l e d  t r a d e - o f f  between per -  
formance and r o b u s t n e s s .  Furthermore,  it uses  
s t a n d a r d ,  w e l l  t e s t e d  numerical  methods. 

C I  o . . . . . . o  

0 C I  

k l  

k, 
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. .  
0 . . . . . 0 CmIk 

L n 

The o r g a n i z a t i o n  of  t h i s  paper  is a fol lows.  
S e c t i o n  I1 o u t l i n e s  t h e  method f o r  examining c o m -  
p e n s a t o r  convergence as t h e  number of modes i n  
t h e  des ign  model is i n c r e a s e d .  S e c t i o n  I11 pre-  
s e n t s  t h e  s t r u c t u r e d  u n c e r t a i n t y  r e p r e s e n t a t i o n  
[8 -121  of parameter  errors f o r  a f l e x i b l e  s t r u c -  
t u r e  and o u t l i n e s  t h e  modif ied Loop T r a n s f e r  
Recovery method. S e c t i o n  I V  p r e s e n t s  an example 
based on a w r a p - r i b  an tenna  [ 1 3 , 1 4 ] .  Both t h e  
( f u l l - s t a t e  feedback)  r e g u l a t o r  problem and t h e  
e s t i m a t o r  problem a r e  p r e s e n t e d .  F i n a l l y  w e  make 
some conclus ions  i n  S e c t i o n  V .  The e n t i r e  proce-  
d u r e  is  p r e s e n t e d  i n  much g r e a t e r  d e t a i l  i n  
Ref. [SI. 

11. MODEL REDUCTION 

C o n t r o l  d e s i g n  f o r  a l a r g e  f l e x i b l e  s t r u c t u r e  
must be based on a reduced o r d e r  model. This 
model is t y p i c a l l y  found by t r u n c a t i n g  "unimpor- 
t a n t "  modes. One method f o r  s e l e c t i n g  t h e  

important"  modes of  a s t r u c t u r e  is  t o  examine 
t h e i r  approximate balanced s i n g u l a r  va lues  [ 4 , 5 ] .  
These a r e  based on t h e  f a c t  t h a t  t h e  modal r e p r e -  
s e n t a t i o n  f o r  l i g h t l y  damped, f l e x i b l e  s t r u c t u r e s  
is approximately ba lanced  i n  t h e  s e n s e  of  Moore 
[ 1 6 ] .  The s i n g u l a r  va lues  t a k e  i n t o  account f r e -  
quency,  damping and i n p u t / o u t p u t  coupl ing  of  each 
mode t o  g i v e  a r e l a t i v e  weight ing  which i s  i n t u i -  
t i v e l y  appea l ing .  For a f l e x i b l e  s t r u c t u r e  wi th  
t h e  fo l lowing  modal r e p r e s e n t a t i o n ;  

- -  

( 1  . 

.. 
x + 2ZRg + R'x = Bu, y=Cx 
2 = d i a g . ( t . ) ,  R = d i a g . ( w . )  (1) 

t h e  approximate balanced s i n g u l a r  v a l u e s  a r e :  

J ( b .  '+ . . +b.  ' ) ( c l i 2 +  . . +cmiz) 
(2 )  

11 
0 .  = 

4CiWi 

A f t e r  o r d e r i n g  modes on t h e  b a s i s  of approxi -  
mate balanced s i n g u l a r  v a l u e s ,  t h e  s i z e  of t h e  
d e s i g n  model must be chosen. Two d i f f e r e n t  
approaches can be taken .  One is t o  ensure  t h a t  
a d d i t i o n  of  t h e  n e g l e c t e d  modes w i l l  not  d e s t a b i -  
l i ze  t h e  system. This  can be done by t r e a t i n g  
n e g l e c t e d  modes a s  an u n s t r u c t u r e d  u n c e r t a i n t y  
and apply ing  t h e  a p p r o p r i a t e  c o n s t r a i n t s  on loop 
shape [ 6 ] .  T h i s  is t h e  approach taken i n  
Ref. [ 1 7 ] .  However it does not  t a k e  i n t o  account 
t h e  f a c t  t h a t  t h e  model e r r o r s  i n  t h i s  c a s e  a r e  
known n e g l e c t e d  dynamics r a t h e r  than  u n c e r t a i n -  
t i e s ,  and fur thermore  does not  address  t h e  i s s u e  
of  performance.  The approach taken  i n  t h i s  work 
is  t o  c o n t i n u e  adding modes u n t i l  l i t t l e  f u r t h e r  
change i n  t h e  compensator des ign  is observed.  
One measure f o r  t h i s  i s  t o  examine t h e  f u n c t i o n a l  
g a i n s  [ 1 - 3 1 ,  T h i s  method t r e a t s  t h e  convergence 
of  t h e  LQR and KBF problems s e p a r a t e l y .  A v a r i a -  
t i o n  on t h i s  method which f i t s  wel l  i n t o  t h e  con- 
t e x t  o f  loop t r a n s f e r  recovery is t o  examine t h e  
loop g a i n  a s  t h e  model o r d e r  i s  increased .  This  
g i v e s  a measure on t h e  performance of t h e  o v e r a l l  
compensator, and provides  a simple but  accura te  

t es t  o f  t h e  r e l a t i o n s h i p  between d e s i r e d  p e r f o r -  
mance and r e q u i r e d  model o r d e r .  T h i s  involves  
d e s i g n i n g  a compensator based on a l o w  o r d e r  
p l a n t ,  apply ing  t h i s  t o  t h e  " f u l l - o r d e r ' '  eva lua-  
t i o n  model and p l o t t i n g  t h e  loop g a i n .  T h i s  
procedure is r e p e a t e d  f o r  s u c c e s i v e l y  h i g h e r  
o r d e r  d e s i g n  mclels u n t i l  t h e  loop g a i n  con- 
verges .  T h i s  i n d i c a t e s  t h a t  t h e  a d d i t i o n  of  
f u r t h e r  modes w i l l  have no a f f e c t  on t h e  r e s u l t -  
i n g  compensator d e s i g n .  

111. MODIFIED LTR DESIGN - 

Once a n  a p p r o p r i a t e  reduced o r d e r  model is chosen 
a d e s i g n  which both  provides  adequate  performance 
and is r o b u s t l y  s t a b l e  f o r  a l l  sets of  p o s s i b l e  
p l a n t  v a r i a t i o n s  must be chosen. S i n c e  c losed-  
loop s t a b i l i t y  appears  t o  be  m o s t  s e n s i t i v e  t o  
frequency v a r i a t i o n s  we w i l l  assume t h a t  t h i s  
a f f e c t  dominates any o t h e r  u n c e r t a i n t i e s .  The 
method, however, c a n  be t r i v i z l l y  extended to  
i n c l u d e  o t h e r  parameter  u n c e r r a i c t i e s  such a s  
damping ra t ios  or  mode shapes .  

Consider  t h e  model of Eq. (1). To p l a c e  t h i s  
i n  t h e  c o n t e x t  of  t h e  LQG/LTR d e s i g n  approach 
ippend a n o i s e  model and a q u a d r a t i c  cost func-  
t i o n a l  t o  a r r i v e  a t  t h e  fo l lowing  c o n t r o l  prob- 
lem: 
Given 

+ 2ZR3 + R'x = Bu + qBw, y=Cx 
Minimize ( 3 )  - T T  T T T 

J = E[ I ( x  L Lx + u u ) d t ] ,  E[ww ] = E [ w  ] = I  
0 

The p r o c e s s  n o i s e  is assumed t o  e n t e r  a t  t h e  con- 
t r o l  i n p u t s  i n  o r d e r  t o  achieve  loop recovery a s  
q+- [ 3 ] .  The n o i s e  covar iances  a r e  s e t  t o  t h e  

i d e n t i t y  and u u is weighted i n  t h e  c o s t  func- 
t i o n a l  t o  s i m p l i f y  t h e  problem. While t h e  
LQG/LTR approach guarantees  e x c e l l e n t  g a i n  and 
phase margins it does not  d i r e c t l y  take  i n t o  
account  any informat ion  on parameter  u n c e r t a i n t y .  
I n  f a c t ,  c o n t r o l l e r s  des igned  v i a  t h e  s t a n d a r d  
LQG/LTR approach can  be ex t remely  s e n s i t i v e  t o  
s m a l l  v a r i a t i o n s  i n  t h e  modal f r e q u e n c i e s  of a 
l i g h t l y  damped, f l e x i b l e  s t r u c t u r e ,  a s  i l l u s -  
t r a t e d  i n  S e c t i o n  IV. 

T 

One method t h a t  formally t a k e s  i n t o  account  
model u n c e r t a i n t y  i s  t h e  s t r u c t u r e d  u n c e r t a i n t y  
r e p r e s e n t a t i o n  [ 8 - l o ] .  For models l i k e  t h e  one 
cons idered  h e r e ,  u n c e r t a i n t y  may be r e p r e s e n t e d  
by a l i n e a r  f r a c t i o n a l  t r a n s f o r m a t i o n  on t h e  
nominal p l a n t  a s  i l l u s t r a t e d  i n  F i g .  1. For m 
parameter  u n c e r t a i n t i e s  t h e  m a t r i x  A w i l l  have 

( 4 )  

where t h e  c ' s  a r e  r e a l  numbers between -1 and 1 ,  

and k i  is  t h e  rank of  t h e  i t h  u n c e r t a i n t y  

[ 11,121.  A method f o r  d e r i v i n g  tile in te rconnec-  
t i o n  s t r u c t u r e  is a l s o  o r e s e n t e d  i n  

i 



Refs.  [ 1 1 , 1 2 ] .  In p a r t i c u l a r ,  f o r  t h e  model of  
%q. ( 3 )  w i t h  6% u n c e r t a i n t y  i n  t h e  d iagonal  e l e -  

11 ments of  A ' ,  a s t a t e - s p a c e  r e p r e s e n t a t i o n  o f  P 

is as fol lows:  

This s u g g e s t s  t h a t  one way t o  d e a l  wi th  f re-  
quency u n c e r t a i n t y  is t o  set  up t h e  fo l lowing  
modif ied LQCfLTR problem. 

Given .. x + 2ZQi + R2x = Bu + qBwl + r h f ,  

T T T 
E[w w ] = E[w w ] = E[vv ] = I 

FCX 

1 1  2 2  
Minimize 

" 
J = E [  j (xT[qclLTL+qc2Qr]x + uTu)dt ]  

0 

where 

For a g iven  mat r ix  L i n  Eq. ( 6 )  f o u r  f r e e  par -  
ameters  remain i n  t h e  problem. These a r e  q c l  and 
qc2 i n  t h e  f u l l - s r a t e  feedback r e g u l a t o r  problem 
and q and r i n  t h e  opt imal  e s t i m a t o r  problem. 
I n c r e a s i n g  q c l  i n c r e a s e s  t h e  emphasis p laced  on 
performance,  whi le  i n c r e a s i n g  qc2 i n c r e a s e s  t h e  
emphasis on t h e  u n c e r t a i n t y  model. I n c r e a s i n g  q 
improves loop recovery ,  w h i l e  i n c r e a s i n g  r 
i n c r e a s e s  t h e  emphasis on t h e  u n c e r t a i n t y  model 
a g a i n .  A s  i l l u s t r a t e d  i n  t h e  next  s e c t i o n ,  t h e  
d e s i g n e r  can a t t a i n  a c o n t r o l l e d  t r a d e - o f f  b e t -  
ween robus tness  and performance by manipula t ing  
t h e s e  f o u r  s c a l a r  v a r i a b l e s .  

I V .  EXAMPLE - _ _ _  

Consider  t h e  l a r g e  f l e x i b l e  space  antenna 
d e s c r i b e d  i n  Refs .  [13-151, and i l l u s t r a t e d  i n  
F i g .  2 .  T h i s  i s  a wrap-r ib  d e s i g n  of approxi -  
mate ly  1 8 0 f t  i n  d iameter .  The f i r s t  fundamental 
f l e x i b l e  f requency is a t  6 . 9 5  r a d f s e c  w i t h  a 
damping r a t io  of  1.1%. The c o n t r o l  problem con- 
s i s c s  of a c t i v e l y  damping t h e  o u t - o f - p l a n e  motion 
due t o  s l e w  maneuvers so  a s  t o  minimize t h e  ove- 
r a l l  antenna RMS s u r f a c e  e r r o r  wi th  r e s p e c t  t o  
i t s  nominal p o s i t i o n  i n  space.  Actua tors  provide  
or thogonal  to rques  a t  che hub c e n t e r  whi le  mea- 
surements  of t h e  hub r o t a t i o n  and t i p  d e f l e c t i o n s  
a r e  a v a i l a b l e .  Due t o  symmetry, t h e  problem can 
be reduced t o  t h e  c o n t r o l  of  a s i n g l e  quadrant  
w i t h  one a c t u a t o r  and two measurements. This is 
i l l u s t r a t e d  i n  F i g .  3 .  

Using t h e  methods d e s c r i b e d  i n  S e c t i o n  XI an 
8-mode d e s i g n  model is chosen.  This c o n s i s t s  o f  
one r i g i d  body mode and 7 f l e x i b l e  modes. For  
s i m p l i c i t y  t h e  uncer ta in ty .  ,in--modal f r e q u e n c i e s  
is cons idered  t o  be equal  for a l l  modes. 

NOW c o n s i d e r  t h e  fo l lowing  h y p o t h e t i c a l  s p e c i -  
f i c a t i o n s  on t h e  input  loop shape .  

Bandwidth -5 r a d f s e c  
Loop g a i n  60db a t  . 1 r a d f s e c  
Phase margin 60' 
Gain margin 20db 

These might be  d e r i v e d  from d i s t u r b a n c e  r e j e c t i o n  
c o n s i d e r a t i o n s  (where d i s t u r b a n c e s  a c t  a t  t h e  
a c t u a t o r  i n p u t s ) ,  o r  they  might be d e r i v e d  from 
a c t u a t o r  u n c e r t a i n t y  c o n s i d e r a t i o n s .  They can  be 
m e t  by a s t a n d a r d  LQG/LTR approach.  I n  p a r t i c u -  
l a r ,  assume a c o n t r o l  problem i n  t h e  form of 
Eq. ( 6 ) ;  l e t  r=qc2=0 ( i g n o r e  t h e  u n c e r t a i n t y  
model) ,  l e t  qcl=lO and q=lO'. The r e s u l t i n g  loop 
shape is shown i n  F i g .  4 .  The g a i n  margin is  
36db and t h e  phase margin is 6 5 ' .  The d e s i g n  
minimizes RMS e r r o r  w h i l e  a l s o  meet ing frequency 
domain performance s p e c i f i c a t i o n s .  However, a 
s imple  check shows t h a t  a uniform i n c r e a s e  of 7% 
i n  t h e  modal f requencies  r e s u l t s  i n  i n s t a b i l i t y  
o f  t h e  c losed- loop  system. Next t a k e  t h e  uncer-  
t a i n t y  model i n t o  account  t o  improve r o b u s t n e s s .  
A s  a f i r s t  s t e p  add w h i t e  n o i s e  a t  t h e  uncer-  
t a i n t y  model i n p u t .  I n  t h i s  case a l l  parameters  
remain as b e f o r e  except  r which becomes 10'. The 
r e s u l t i n g  loop shape is  i d e n t i c a l  t o  t h a t  i l l u s -  
t r a t e d  i n  F i g .  4 ,  but  t h e  c losed- loop  system is  
now s t a b l e  for 352 uniform i n c r e a s e s  i n  a l l  modal 
f r e q u e n c i e s .  I t  is  a l s o  s t a b l e  of  17% d e c r e a s e s  
and f i r s t  goes u n s t a b l e  f o r  a 17% i n c r e a s e  i n  t h e  
second modal frequency coupled w i t h  17% d e c r e a s e s  
i n  t h e  o t h e r  s i x .  Robustness can be improved 
even f u r t h e r  by p e n a l i z i n g  t h e  o u t p u t  of  t h e  unc- 
e r t a i n t y  model. F ix  a:: o t h e r  parameters  and le: 
qc2=1,000. The loop shape f o r  t h i s  c a s e  is  
i l l u s t r a t e d  i n  F i g .  5. Gain margin is  20db and 
phase margin is 8 5 ' .  A l l  frequency domain s p e c i -  
f i c a t i o n s  a r e  s t i l l  m e t ,  bu t  t h e  c losed- loop  s y s -  
tem is now s t a b l e  f o r  46% uniform i n c r e a s e s  i n  
f requency a long  wi th  32% d e c r e a s e s .  The system 
f i r s t  goes u n s t a b l e  f o r  a 32% i n c r e a s e  i n  t h e  
f o u r t h  modal f requency coupled w i t h  32% d e c r e a s e s  
i n  t h e  o t h e r  s i x .  

The d i f f e r e n c e s  between t h e  s e n s i t i v e  and 
r o b u s t  d e s i g n s  can b e  examined from a number o f  
d i f f e r e n t  p o i n t s  of view. The c o s t  f u n c t i o n a l  
f o r  t h e  r o b u s t  d e s i g n  p l a c e s  cons iderably  g r e a t e r  
emphasis on t h e  h igher  modes. This  is  because 
t h e  m a t r i x  Q weights  each mode i n  p r o p o r t i o n  t o  

i t s  frequency.  The m a t r i x  L L on t h e  o t h e r  hand 
p l a c e s  r e l a t i v e l y  h igher  weight ing  on t h e  r i g i d  
body mode. The robus t  d e s i g n  t h e r e f o r e  r e s u l t s  
i n  c losed- loop  r e g u l a t o r  p o l e s  which l i e  f u r t h e r  
t o  t h e  l e f t  with i n c r e a s i n g  frequency.  The s e n -  
s i t i v e  d e s i g n ,  on t h e  o t h e r  hand, a t t e m p t s  t o  
push t h e  c losed- loop  poles  cor responding  t o  t h e  
r i g i d  body mode f u r t h e r  t o  t h e  l e f t  than t h o s e  
cor responding  t o  t h e  f l e x i b l e  modes. This  is  
a l s o  demonstrated by t h e  loop g a i n s  ( F i g s .  3 and 
4 ) .  While both des igns  have approximately equal  
low frequency g a i n ,  t h e  s e n s i t i v e  d e s i g n  r o l l s  
o f f  much more q u i c k l y .  The r o b u s t  d e s i g n  has  a 
h igher  loop g a i n  i n  t h e  reg ion  of  u n c e r t a i n  f r e -  
quencies .  These resul ts  sugges t  t h a t  d e s i g n s  
which a t tempt  a high degree  of c o n t r o l  of t h e  
r i g i d  body mode r e l a t i v e  t o  f l e x i b l e  modes w i l l  
be very s e n s i t i v e  t o  f requency u n c e r t a i n t y .  

T 

- V .  CONCLUSIONS 

Standard  Loop T r a n s f e r  Recovery methods a r e  an 
e f f e c t i v e  way t o  achieve  robus t  c o n t r o l l e r  
d e s i g n s  when t h e  modeling e r r o r s  of t h e  p l a n t  a r e  
w e l l  c h a r a c t e r i z e d  by a s i n g l e  u n s t r u c t u r e d  unc- 
e r t a i n t y  model. However, i n  t h e  case  of a f l e x i -  
b l e  s t r u c t u r e  w i t h  u n c e r t a i n  f requencies  t h e  
u n s t r u c t u r e d  uncer ra incy  model is o v e r l y  conser -  
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vative. In this case a modification of the Loop 
"rransfer Recovery procedure is needed. The 
approach taken here overcomes some of the short- 
comings of the standard LTR methods. It sets up 
the control design procedure in terms of -- 
cured uncertainties, and then minimizes the 
2-norm of the resulting transfer function. Once 
measurement noise is added and performance and 
control cost penalties are appropriately 
adjusted, a well posed LQG problem is obtained 
which can be solved with standard numerical meth- 
ods. Here solving the LQG problem is a computa- 
tionally efficienc approximation to the v-synthe- 
sis approach proposed by Doyle [18,19]. The 
results of Section IV demonstrate that it does 
provide a significant improvement over standard 
LQG/LTR methods. As indicated in Section IV, 
robustness and performance can be easily traded 
off by adjusting only four parameters until a 
suitable compromise is found. 
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